

LA-UR-15-22102

Approved for public release; distribution is unlimited.

Title: MaRIE Undulator & XFEL Systems

Author(s): Nguyen, Dinh Cong

Marksteiner, Quinn R.

Anisimov, Petr Mikhaylovich Buechler, Cynthia Eileen

Intended for: MaRIE XFEL Pre-Conceptual Reference Design and Risk Reducing R&D Plan

Review, 2015-03-12 (Los Alamos, New Mexico, United States)

Issued: 2015-03-23

MaRIE Undulator & XFEL Systems

Dinh Nguyen Quinn Marksteiner Petr Anisimov Cindy Buechler

March 12th, 2015

Outline

- MaRIE XFEL Performance Parameters
- Input Electron Beam Parameters
- Undulator Design
- Genesis Simulations
- Risks
- Summary

MaRIE XFEL Performance Parameters

MaRIE Undulator Performance Parameters

- □ Produces >2 x 10¹⁰ 42-keV photons in each 33-fs pulse
- \square Provides standard SASE bandwidth (0.1% relative to λ_0)
- \Box Provides narrow linewidth (<0.01% relative to λ_0) option for CXDI

Undulator and FEL Radiation Parameters

	Symbol	Value
Undulator period	λ_{u}	18.6 mm
Undulator magnetic field	B_0	0.7 T
rms (peak) undulator parameter	$K_{\rm rms}$ ($K_{\rm peak}$)	0.86 (1.22)
FEL resonance wavelength	λ_{0}	0.2934 Å
FEL (Pierce) parameter	ρ	0.0005
Calculated 3D gain length	L_{G}	2.6 m
Calculated 3D saturated power	$P_{\mathbb{S}}$	9 GW
FEL pulse energy at saturation	W_{p}	0.3 mJ

Assumptions

Electron beam at undulator entrance has the following properties

- Bunch charge = 100 pC
- Bunch length = 10 μ m (33 fs)
- Peak current = 3.5 kA
- Normalized emittance (slice) = 0.2 μm
- rms relative energy spread (slice) = 0.02%
- No significant energy slew along the bunch
- No significant microbunching (μBI) due to longitudinal space charge
- No dispersion of x beam centroid along the bunch

Elegant-generated Electron Beam (S-band)

S-band linac electron beam distribution has LSC µBI suppression

Electron beam at the entrance has a residual energy slew. Lasing occurs over the region where peak current is maximum and energy slew is minimum.

Courtesy of J. Lewellen

MaRIE undulators are similar to SwissFEL U15

Courtesy of T. Schmidt

- PM material = VACODYM 863 TP with Dy infusion
- $B_{\rm r} = 1.25$ tesla; intrinsic $H_{\rm c} > 2{,}300$ kA/m
- Pole material = vanadium permendur
- Wakefield shield and RF fingers = 0.1-mm CuNi foils with 50-μm copper as the RF surface.

Calculated magnetic field vs gap

MaRIE XFEL has 14 FODOs with undulators

MaRIE XFEL with Distributed Seeding

Courtesy of R. Ganter

Each 0.6m break between undulator segments houses two gate valves, a beam position monitor, a phase shifter, a PM FODO quad and an adjustable alignment quad.

In-Vacuum Undulator Performance Data

	SwissFEL U15	MaRIE
Period (mm)	15	18.6
Maximum B ₀ (T)	0.85	0.7
Maximum K _{peak}	1.8	1.49
Nominal gap (mm)	4.7	7.0
Segment length (m)	4.0	3.72
N periods / segment	266	200
Vacuum pressure (torr)	2.6 x 10 ⁻⁷	
CuNi straightness (μm)	12-18	

R. Ganter et al., Proceedings of FEL2012 Conference

CuNi roughness (nm)

Wakefield, flat Cu 5-mm

Wakefield, round Cu 5-mm

UNCLASSIFIED

120

-50 keV/m/.1nC

-150 keV/m/.1nC

Distributed Seeding with Si(111) Crystals

Si(111) crystals have >90% reflectivity per surface

Bragg angle at 0.294Å is 2.7°

Darwin width = 1.25 arc sec ($\Delta \lambda / \lambda_0 = 1.3 \times 10^{-4}$)

A 0.7- μ m slit between double monochromators selects ±0.01% BW

Curved Si crystals (R = 0.424m) focus X-ray beams onto the slit.

Chicane synchronizes electrons with X-rays

Electron and X-ray beams are delayed with respect to straight path by 357 μm (1.19 ps)

Chicane R_{56} also smears out any FEL-induced microbunching (fresh bunch technique).

SASE generates 3 x 10¹⁰ photons in 0.08% BW

MaRIE XFEL in SASE mode is quasi-coherent temporally. Each FEL pulse contains about one hundred coherence lengths, same as the number of spectral spikes. The overall bandwidth (FWHM) is 0.08% in agreement with prediction.

$$\frac{\Delta \lambda}{\lambda_0} = \frac{4 \ln 2}{\sqrt{\pi}} \rho \approx 1.56 \rho$$

How does DS improve spectral contrast?

Angle-integrated undulator radiation with real electron beams starts out with many photons at wavelengths longer than λ_0 (equivalent to ϵ_c)

As SASE builds up, spectrum becomes more Gaussian and shifts to shorter λ

SASE power (log) versus distance

Seeding at longer λ (but within gain bandwidth) increases the seeded FEL signal relative to SASE background, thus improving the spectral contrast.

DS generates 2 x 10¹⁰ photons in 0.008% BW

Seeding earlier in the power vs z curve at more than one location produces narrow FEL linewidth and low SASE background.

Different DS schemes yield similar performance

All Distributed Seeding schemes yield the same number of photons and relative bandwidth. The worst performer is single-step self-seeding (purple traces) which yields fewer photons and larger rms bandwidth.

Risk 1 – I_{peak} is too low

- **Cause**: Can't compress electron bunch in BC2 with good $ε_n$ and Δγ/γ.
- Consequence: Number of photons in 100-pC bunch drops to 1 x 10⁸ (undulator radiation with medium peak current in long undulators).
- Mitigation: Increase bunch charge and/or undulator length.

Risk 2 – Beam ε_n and $\Delta \gamma / \gamma$ don't meet specs

- Cause: Can't achieve the specified ε_n (0.2 μ m) and $\Delta \gamma / \gamma$ (0.02%).
- Consequence: Number of photons / bunch is affected.
- Mitigation: Taper the undulator to recover the number of photons.

Risk 3 – CSR in delay chicane is too high

- Cause: CSR reduces the beam energy where lasing occurs.
- Consequence: Number of photons / bunch is reduced.
- Mitigation: Reduce number of filters (chicanes); taper the undulator.

Risk 4 – Broad spectrum from DS FEL

- <u>Cause</u>: Incomplete dechirping, large energy spread or CSR in chicanes.
- Consequence: Output bandwidth (~0.08%) is too large for CXDI.
- <u>Mitigation</u>: Perform early validation experiments.

Risk 5 – LSC causes too much microbunching

- <u>Cause</u>: LSC microbunching is significant after BC2.
- Consequence: Larger SASE bandwidth. DS may not work.
- Mitigation: Model DS using electron beams with μBI.

 μ BI causes strong modulation in P vs s plot. The SASE peak power is higher but the spectrum is broader.

Power (GW)

Risk 6 – Resistive wake is too high

- Cause: Resistive wake is higher than Bane-Stupakov prediction.
- **Consequence**: Number of photons / bunch is reduced.
- <u>Mitigation</u>: Taper the undulator; perform validation experiments.

Summary

- Time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met.
- The highest risks are associated with the electron beam driving the XFEL undulator.
- Risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

